Nous réalisons l’étude de vos projets sur logiciel Esprit 5 axes continu.
Nous établissons nos propres gammes de fabrication en optimisant les différentes étapes d’usinage en vous garantissant la qualité du produit final.
Frontiers of research
Mechanical engineers are constantly pushing the boundaries of what is physically possible in order to produce safer, cheaper, and more efficient machines and mechanical systems. Some technologies at the cutting edge of mechanical engineering are listed below.
Micron-scale mechanical components such as springs, gears, fluidic and heat transfer devices are fabricated from a variety of substrate materials such as silicon, glass and polymers like SU8. Examples of MEMS components are the accelerometers that are used as car airbag sensors, modern cell phones, gyroscopes for precise positioning and microfluidic devices used in biomedical applications.
Friction stir welding, a new type of welding, was discovered in 1991 by The Welding Institute (TWI). The innovative steady state (non-fusion) welding technique joins materials previously un-weldable, including several aluminum alloys. It plays an important role in the future construction of airplanes, potentially replacing rivets. Current uses of this technology to date include welding the seams of the aluminum main Space Shuttle external tank, Orion Crew Vehicle test article, Boeing Delta II and Delta IV Expendable Launch Vehicles.
Composites or composite materials are a combination of materials which provide different physical characteristics than either material separately. Composite material research within mechanical engineering typically focuses on designing (and, subsequently, finding applications for) stronger or more rigid materials while attempting to reduce weight, susceptibility to corrosion, and other undesirable factors.